Data
Manipulation
Using R

Cleaning & Summarizing Datasets

ACM DataScience Camp

Packages Useful for this Presentation
dplyr

Ram Narasimhan
@ramnarasimhan

What will we be covering today?

Basics of Data Manipulation
* What do we mean by Data Manipulation?
e 4 Reserved Words in R (NA, NaN, Inf & NULL)
* Data Quality: Cleaning up data
— Missing Values | Duplicate Rows| Formatting Columns
* Subsetting Data
e “Factors” inR
Data Manipulation Made Intuitive
e dplyr
* The “pipe” operator %>% (‘and then’)

A note about Built-in datasets

* Many datasets come bundled with R
 Many packages have their own data sets
* To find what you have, type data ()

> data()

#Examples: mtcars, iris, quakes, faithful, airquality,
women

#In ggplot2
> movies; diamonds

Important: You won’t permanently damage these, so
feel free to experiment!

Why Data
Carpentry?

Building Data
Science Teams

DJ Patil, Building Data Science Teams

Strata

What are the ways to manipulate data?

~_Missing values

~ Data Summarization
Group By Factors
Aggregate
Subset / Exclude
Bucketing Values
Rearrange (Shape)

Merge Datasets

Data Quality

Data Quality

Datasets in real life are never perfect...
How to handle these real-life data quality issues?

* Missing Values
* Duplicate Rows
* |nconsistent Dates

* Impossible values (Negative Sales)
— Check using if conditions
— Qutlier detection

NA, NULL, Inf & NaN

* NA # missing

* NULL # undefined

* Inf # infinite 3/0

 NaN # Not a number Inf/Inf

From R Documentation

NULL represents the null object in R: it is a reserved word.
NULL is often returned by expressions and functions whose values are
undefined.

NA is a logical constant of length 1 which contains a missing
value indicator.

3a-9

Dealing with NA’s (Unavailable Values)

 To check if any value is NA: is.na

Usage:| is.na(variable)

is.na(vector)

> x <- c¢(3, NA, 4, NA, NA)

> is.na(x[2])

[1] TRUE

> is.na(x)

[1] FALSE TRUE FALSE TRUE TRUE
> lis.na(x)

[1] TRUE FALSE TRUE FALSE FALSE

Let’s use the built-in dataset airquality

> is.na(airquality$Ozone) _ How to Convert these NA’s to 0’s?
#TRUE if the value is NA, FALSE otherwise

>lis.na(airquality$0Ozone) #note the ! (not)
Prints FALSE if any value is NA

tf <- is.na(airquality$Solar.R) # TRUE FALSE
conditional vector

(TRUE if the values of the Solar.R variable is
NA, FALSE otherwise)

airqualityS$Solar.R[tf] <- O

Cleaning the data

‘;?..?W e “iris” is a built-in dataset in R
* Duplicate Rows
—Which rows are duplicated?

> duplicated(iris)

Formatting Columns
* as.numeric()

* as.character ()

Subsetting
Summarizing
& Aggregation

“Factors” in R

* Categorical Variables in Statistics
— Example: “Gender” = {Male, Female}
— “Meal” = {Breakfast, Lunch, Dinner}
— Hair Color = {blonde, brown, brunette, red}
Note: There is no intrinsic ordering to the categories

* |[n R, Categorical variables are called “Factors”

— The limited set of values they can take on are called “Levels”

class(irisS$Species)

iris$SSpecies[1:5] #notice that all Levels are listed
str (mtcars)

#Let's make the "gear" column into a factor
mtcarsSgear <- as.factor(mtcars$gear)

str (mtcarsS$gear)

The subset () function

Usage: |subset(dataframe, condition)
* Very easy to use syntax

* One of the most useful commands

small iris <- subset(iris, Sepal.Length > 7)
subset (movies, mpaa=='R')

Things to keep in mind
* Note that we don’t need to say df$column_ name
* Note that equals condition is written as ==

* Usually a good idea to verify the number of rows in the
smaller data frame (using nrow())

3a-14

Aggregating using table()

Table counts the #Observations in each level of a factor

table(vector)

table(irisS$Species)

table(mtcars$gear)

table(mtcarsS$Scyl)

#put it together to create a summary table
table(mtcars$Sgear, mtcarsScyl)

These resulting tables are sometimes referred to as “frequency tables”

#Using "with”: note that we don't need to use $
with (movies, table(year))

with(movies, table(length))

with (movies, table(length>200))

Data Manipulation - Key Takeaways
Lecture-3a

1. Data Quality: is.na(), na.rm(), is.nan(), is.null()
2. Table() to get frequencies
3. Subset(df, var==value)

dddddddd

Why Use dplyr?
Very intuitive, once you understand the basics
Very fast

— Created with execution times in mind

Easy for those migrating from the SQL world
When written well, your code reads like a ‘recipe’
“Code the way you think”

- ~

<+~ SAC-Split-Apply-Combine
* Let’s understand the SAC idiom

Split up a big dataset

Apply a function to each piece

Combine all the pieces back together

alz2 3
al4
b|0

2.5
b|5
cl|5b5
c (10 25

> glimpse(movies)
. {) Variables:
tbl df IS a Wrapper that $ title (chr) "$", "$1000 a Touchdown", "$21 a Day Once a Month", "S$...
— $ year (int) 1971, 1939, 1941, 1996, 1975, 2000, 2002, 2002, 1987, o0
o Mo $ length (int) 121, 71, 7, 70, 71, 91, 93, 25, 97, 61, 99, 96, 10, 10...
prethﬁes a data frame $ budget (int) NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
$ rating (dbl) 6.4, 6.0, 8.2, 8.2, 3.4, 4.3, 5.3, 6.7, 6.6, 6.0, 5.4,...
$ votes (int) 348, 20, 5, 6, 17, 45, 200, 24, 18, 51, 23, 53, 44, 11...
S rl (dbl) 4.5, 0.0, 0.0, 14.5, 24.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4....
S r2 (dbl) 4.5, 14.5, 0.0, 0.0, 4.5, 4.5, 0.0, 4.5, 4.5, 0.0, 0.0...
$ r3 (dbl) 4.5, 4.5, 0.0, 0.0, 0.0, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5,
> library(ggplot2) S r4 (dbl) 4.5, 24.5, 0.0, 0.0, 14.5, 14.5, 4.5, 4.5, 0.0, 4.5, 1
> glimpse (movies) $ r5 (dbl) 14.5, 14.5, 0.0, 0.0, 14.5, 14.5, 24.5, 4.5, 0.0, 4.5,.
> pretty movies <- tbl df(movies) S r6 (dbl) 24.5, 14.5, 24.5, 0.0, 4.5, 14.5, 24.5, 14.5, 0.0, 44....
—_ —_ S r7 (dbl) 24.5, 14.5, 0.0, 0.0, 0.0, 4.5, 14.5, 14.5, 34.5, 14.5...
> movies $ rs (dbl) 14.5, 4.5, 44.5, 0.0, 0.0, 4.5, 4.5, 14.5, 14.5, 4.5,
> pretty movies $ r9 (dbl) 4.5, 4.5, 24.5, 34.5, 0.0, 14.5, 4.5, 4.5, 4.5, 4.5, 1...
- $ rl0 (dbl) 4.5, 14.5, 24.5, 45.5, 24.5, 14.5, 14.5, 14.5, 24.5, 4...
$mpaa (fCtr)IIIIIIRIIIIIIIIPG_13IPG_13IIIIII
$ Action (int) 0, 0, 0, 0, 0, 0, 1, 0, O, O, O, O, O, O, 1, 1, O, O,
$ Animation (int) 0, 0, 1, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O,
$ Comedy (int) 1, 1, 0, 1, 0, O, O, O, O, O, O, O, 1, O, 1, 1, O, O,
$ Drama (int) 12, 0, 0, 0, 0, 1, 1, O, 1, O, 1, O, O, O, O, O, 1, O,
> pretty movies $ Documwentary (int) 0, 0, 0, 0, 0, O, O, 1, O, O, O, O, O, O, O, O, O, 1,
- $ Romance (int) 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O,
Source: local data frame [58,788 x 24] $ Short (int) 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1,
title year length budget rating votes rl r2 r3 rd
1 $ 1971 121 NA 6.4 348 4.5 4.5 4.5 4.5
2 $1000 a Touchdown 1939 71 NA 6.0 20 0.0 14.5 4.5 24.5
3 $21 a Day Once a Month 1941 7 NA 8.2 5 0.0 0.0 0.0 0.0
4 $40,000 1996 70 NA 8.2 6 14.5 0.0 0.0 0.0
5 850,000 Climax Show, The 1975 71 NA 3.4 17 24.5 4.5 0.0 14.5
6 Spent 2000 91 NA 4.3 45 4.5 4.5 4.5 14.5
7 Swindle 2002 93 NA 5.3 200 4.5 0.0 4.5 4.5
8 '15' 2002 25 NA 6.7 24 4.5 4.5 4.5 4.5
9 ‘38 1987 97 NA 6.6 18 4.5 4.5 4.5 0.0
10 '49-'17 1917 61 NA 6.0 51 4.5 0.0 4.5 4.5
Variables not shown: r5 (dbl), r6 (dbl), r7 (dbl), r8 (dbl), r9 (dbl), rl0

tbl df() and glimpse()

(dbl), mpaa (fctr), Action (int), Animation (int), Comedy (int), Drama

(int), Documentary (int),
>

Romance (int), Short (int)

Understanding the Pipe Operator ~/

* On January first of 2014, a new I
. 5 6,7 8|9 |10 11
R package was launched on github 1213(14 1516 17 18
. 19 20 21 22 23 24 25

— maggritr 2627|2829 (30|31

* A “magic” operator called the PIPE was introduced
%>%
(Read aloud as: THEN, “AND THEN”, “PIPE TO”)

Take 1000, and then its sqrt
round (sqrt (1000), 3) And then round it

library (magrittr)
1000 ¥>% sqrt %>% round()
1000 %>% sqgrt %>% round(.,3)

dplyr takes advantage of Pipe 7/

* Dplyr takes the %>% operator and uses it to great
effect for manipulating data frames

e Works ONLY with Data Frames

A belief that 90% of data
manipulation

can be accomplished with
5 basic “verbs”

dplyr Package

 The five Basic “Verbs”

What does it do?

filter()
arrange ()
select ()
mutate ()

summarise ()

Select a subset of ROWS by conditions

Reorders ROWS in a data frame

Select the COLUMNS of interest

Create new columns based on existing columns (mutations!)

Aggregate values for each group, reduces to single value

dplyr-23

Remember these Verbs (Mnemonics)

. FILTERows I=—= ¥V ——

. seLeCT Column Types

* ArRange Rows (SORT) Z‘

|
* Mutate (into something new) ‘ 6

 Summarize by Groups

i
Il

¢ 60

® O

dplyr-24

* Usage:

— Multiple conditions can be supplied.
— They are combined with an AND

movies with budgets <- filter(movies_df, !is.na(budget))
filter (movies, Documentary==1)

filter (movies, Documentary==1) %>% nrow()

good_comedies <- filter(movies, rating > 9, Comedy==1)

dim(good_comedies) #171 movies

#' Let us say we only want highly rated comdies, which a lot
of people have watched, made after year 2000.

movies %>%
filter(rating >8, Comedy==1, votes > 100, year > 2000)

dplyr-25

Select()

* Usage: select (data, columns) ””I

movies df <- tbl_df (movies) I I
select (movies_df, title, year, rating) #Just the columns we want to see

select (movies _df, -c(rl:rl10)) #we don't want certain columns

#You can also select a range of columns from start:end

select (movies_df, title:votes) # All the columns from title to votes

select (movies_df, -c(budget, rl:r10, Animation, Documentary, Short, Romance))
select (movies_df, contains("r")) # Any column that contains 'r' in its name

select (movies_df, ends with("t")) # All vars ending with ”t"
select (movies_df, starts _with("r")) # Gets all vars staring with “r”

#The above is not quite what we want. We don't want the Romance column
select (movies _df, matches("r[0-9]")) # Columns that match a regex.

dplyr-26

arrange() ﬁ;

Usage: arrange (data, column_ to_sort by)

— Returns a reordered set of rows

— Multiple inputs are arranged from left-to-right

movies df <- tbl_df (movies)

arrange (movies_df, rating) #but this is not what we want
arrange (movies df, desc(rating))

#Show the highest ratings first and the latest year..
#Sort by Decreasing Rating and Year

arrange (movies_df, desc(rating), desc(year))

What’s the difference between these two?

arrange (movies df, desc(rating), desc(year))
arrange (movies df, desc(year), desc(rating))

dplyr-27

mutate() L®

* Usage:

mutate(data, new col = func(oldcolumns)

* Creates new columns, that are functions of existing variables

mutate(iris, aspect ratio = Petal.Width/Petal.Length)

movies with budgets <- filter (movies _df, !is.na(budget))
mutate (movies with budgets, costPerMinute = budget/length) %>%
select (title, costPerMinute)

dplyr-28

group_by() & summarize()

group by(data, column to group) 3>%

summarize (function of variable)

* Group_by creates groups of data
 Summarize aggregates the data for each group

by rating <- group by(movies df, rating)
by rating %>% summarize(n())
avg rating by year <-

group by (movies df, year) %>%
summarize(avg_rating = mean(rating))

dplyr-29

Chaining the verbs together

e Let’s put it all together in a logical fashion

e Use a sequence of steps to find the most expensive
movie per minute of eventual footage

producers_ nightmare <-
filter (movies _df, !is.na(budget)) %>%
mutate (costPerMinute = budget/length) %>%
arrange (desc (costPerMinute)) %>%
select(title, costPerMinute)

dplyr-30

Bonus: Pipe into Plot

* The output of a series of “pipes” can also be fed to
a “plot” command

movies %>%
group by (rating) %>%
summarize(n()) %>%

plot() # plots the histogram of movies by Each value of rating

movies %>%
group by (year) %>%
summarise(y=mean(rating)) %>%

with(barplot(y, names.arg=year, main="AVG IMDB Rating by Year"))

AVG IMDB Rating by Year

& | ~ 9 Y P)
o g, °7 1, ' '
& ° 2 [
b= P o) .
‘E ‘% 1‘4{‘;2\ :‘(?z\ : {
8 “?55"/ ni_/ ~N A
N :S(:*I"\l ix}l\’.s;,\ 7
o ““!uﬁﬂﬁmﬂﬂ Cmzicﬁlll?z: °
1893 1904 1915 1926 1937 1948 1959 1970 1981 1992 2003
2 4 6 8 10

dplyr-31

References

* Dplyr vignettes:
http://cran.rstudio.com/web/packages/dplyr/
vignettes/introduction.html

e Kevin Markham’s dplyr tutorial
— http://rpubs.com/justmarkham/dplyr-tutorial

— His YouTube video (38-minutes)

— https://www.youtube.com/watch?
feature=player embedded&v=jWjqLW-u3hc

e http://patilv.com/dplyr/
— Use arrows to move forward and back

dplyr-32

Aggregating Data Using “Cut”

What does “cut” do? Ry ’\. 7

I
Take the airquality Temperature Data and group into buckets
range (airqualityS$STemp)

— Bucketing
— Cuts a continuous variable into groups

* Extremely useful for grouping values

#First let's cut this vector into 5 groups:

cut (airqualityS$STemp, 5)

cut (airqualityS$STemp, 5, labels=FALSE)

#How many data points fall in each of the 5 intervals?
table(cut (airqualityS$Temp, 5))

Tempbreaks=seq (50,100, by=10)
TempBuckets <- cut(airqualityS$Temp, breaks=Tempbreaks)
summary (TempBuckets)

aggregate() Replaced by dplyr

How many of each species do we have?
Usage: aggregate(y ~ x, data, FUN)

aggregate (numeric variable ~ grouping variable, data)

How to read this?
“Split the <numeric_variable> by the <grouping variable>"

Split y into groups of x, and apply the function to each group
aggregate(Sepal.Length ~ Species, data=iris, FUN='mean')
Note the Crucial Difference between the two lines:
aggregate(Sepal.Length~Species, data=iris,
FUN='length')
aggregate(Species ~ Sepal.Length, data=iris,
FUN='length') # caution!

Note: If you are doing lots of summarizing, the “doBy” package is worth looking into

3a-34

